Oldest Bird Found in China?

29 05 2013

A very interesting article about the new bird/dinosaur relative Aurornis xui was published this week in the British journal Nature.  It can be found at the Nature News Web site, here:  http://www.nature.com/news/new-contender-for-first-bird-1.13088.

Apparently, A. xui is a strong contender for “earliest bird”.  The extremely complete specimen was unearthed by a farmer in China’s Liaoning Province and acquired by the Fossil and Geology Park in Yizhou, China, through a fossil dealer, where it remained unidentified until being discovered by paleontologist Pascal Godefroit in 2012.

The article states that Godefroit believes that A. xui is “the oldest known member of the Avialae,” the group that includes all animals more closely related to modern birds than to dinosaurs.  This makes it the oldest bird, even older than Archaeopteryx.  A phylogenetic comparison of the specimen with approximately 100 other birds and dinosaurs seems to confirm this.

Godefroit goes on to say, “But these sorts of hypotheses are very controversial. We’re at the origins of a group. The differences between birds and [non-avian] dinosaurs are very thin.”

The American journal Science, also has an article about the find, which can be viewed here:  http://news.sciencemag.org/sciencenow/2013/05/earliest-bird-claim-ruffles-feat.html.  This article provides some additional background information about the evolutionary history of birds and dinosaurs.  It also points out the key remaining issue with the find – it’s authenticity.  There have been several famous fossil fakes from China in the last few years, most of which came to light through fossil dealers, as did A. xui, and one commentator in the Science article noted that scientists need to “take a skeptical look at this specimen.”  He stated that the fact that it is so complete and so “so neatly arranged” raises suspicions that needed to be put to rest before the specimen is completely accepted.


Whence Brontosaurus?

22 03 2012

Paleontologists, like everyone else, make their share of mistakes.  Unfortunately, paleontological mistakes become incorporated into scientific literature and sometimes (as in this case) also into the collective consciousness of the general public, reverberating through decades and centuries, long after they are left behind by the science that spawned them.

Such is the case with Brontosaurus.  Long the icon of the dinosaur world, this genus of herbivorous sauropods whose name means “thunder lizard” was a mistake.  An Apatosaurus that had an inaccurate reconstruction of its head added to the original display (because the specimen being used was missing its head when it was discovered), it now exists in science only as a casebook example of phylogenetic inference run amok.  It is also a casebook example both of how we sometimes let our prejudices guide our decisions and how scientific competition is not always a good thing.

The original specimen, still in the great hall of the Peabody Museum of Natural History, at Yale University, in New Haven, Connecticut (USA), went on display in 1905, some six years after Marsh’s death.  It remains in its original pose, based on the early twentieth belief that the animal walked with its head drooping and its tail dragging the ground behind it.  It has, however, had its head replaced with the correct one for the species.  By contrast, the specimen in the American Museum of Natural History shows what is referred to as the “modern posture”, with  its head sticking forward just higher than its body and its tail raised to body level, to demonstrate how scientists currently believe the animal actually looked in life.

Apatosaurus excelsus formerly Brontosaurus excelsus

The original conception of how Brontosaurus excelsus, now Apatosaurus excelsus looked, with its head drooping and its tail being dragged behind.
Image Credit: Image is from Wikipedia Commons and is in the public domain.

So, how did all of this happen?  The story goes something like this… From the late 1860s onward, two American paleontologists, Othniel Charles Marsh and Edward Drinker Cope were engaged in an open feud over the discovery of dinosaur fossils in the American West.  The feud began “back east” as they use to say in the West, when Cope accused Marsh of paying quarrymen in New Jersey to divert to himself fossils that had been paid for by and promised to Cope.  Soon, the two men were engaged snipping at each other’s fossil finds, feuding over fossil hunting rights in the western territories, and in general name calling and accusations.  They tried to out-do each other by finding and naming the largest number of fossils and the biggest specimens they could find.

In the midst of this feud, in 1879, Marsh discovered a very large specimen of a sauropod dinosaur at Como Bluff, in southeastern Wyoming (USA).  It was larger and much more complete than anything that had been found up to then, but it had one little problem.  It was missing its head.  Marsh was convinced that it was an entirely new genus and species, which he named Brontosaurus excelsus. The species name (excelsus) means “highest or sublime” and is intended to refer to the fact that it had the greatest number of sacral vertebrae of any sauropod known at the time.

Scientists started preparing the specimen for display.  Missing bones were replaced using known examples from close relatives of Brontosaurus.  The specimen was missing its feet, so sauropod feet that had been found at the same quarry were used.  But, the head was still a problem.  What to do?  What would the head of such a beast look like?  Marsh, being a thorough nineteenth century man, dismissed many of the proposal as being too effete for such a large animal.  Surely its head would be robust, virile (one at the time might have been tempted to say manly).  So, Marsh had a head constructed from bones of similar species that looked the way Marsh thought Brontosaurus‘ head should look.  This composite skull (which we now know to be mostly made of Brachiosaur bones) was duly created and fitted to the mounted skeleton.  Thus, it was not the (relatively) delicate skull of Apatosaurus excelsus, that would eventually be deemed to be the true appearance of the creature.

Othniel Charles (O.C.) Marsh

Othniel Charles (O.C.) Marsh, who found and named Brontosaurus.
Image Credits: Image is from Wikipedia Commons and is in the public domain.

Marsh, who died in 1899, never lived to see his specimen on display.  Cope had already died in 1897, and their great feud, now known as the Bone War, had died with them.

When it went on display, Brontosaurus was the first sauropod to be seen by the public, and it created a sensation.  It captured the public’s imagination and became a cultural icon of the science of paleontology.  And there it remained through most of the twentieth century, captured in a million images ranging from hollywood renditions in movies to corporate images for oil companies, to a thousand and one cartoon creations and magazine images.

But, even before Brontosaurus went on display, its name and identity were being challenged.  In 1903, paleontologist Elmer Riggs took another look at the fossils.  He agreed with Marsh that B. excelsus was likely its own species, but decided that it had too much in common with Apatosaurus to be a distinct genus.  Riggs reclassified the specimen as Apatosaurus excelsus, where it has remained to this day.  Most scientists over the years have agreed with him.  Yet, in the eyes of the public, it was always Brontosaurus.

Why, you might ask, didn’t Riggs reclassify Apatosaurus into Brontosaurus, since the latter was clearly the better known and more popular name?  The reason for that is the rules surrounding the naming and renaming of animals in biology.  This is governed by rules set down by the International Commission on Zoological Nomenclature (ICZN).  According to those rules, if two genera are determined to be the same, then the one that was named first has priority and the animal(s) in the one named later are reclassified into the older one.  It should be noted here that the same rule applies at all levels of scientific nomenclature (family, genera, species, etc.).  Since Apatosaurus had been named in 1877 (ironically by Marsh himself), Apatosaurus won, and Brontosaurus became what is known as a “junior synonym” and was discarded from formal use.

It might have remained that way, with the general public knowing Brontosaurus and scientists knowing Apatosaurus, but for the U.S. Postal Service.  In 1989, they issues a series of four dinosaur stamps, one of which was of Brontosaurus.  A number of paleontologists went ballistic, accusing the post office of promoting inaccurate science.  From that hoopla, the general public first became aware of the whole Brontosaurus fiasco and the fact that their “beloved” Brontosaurus was actually something else.  In the eyes of some in the public, it called into question the reputation that paleontologists had worked so hard to established.  It seemed that the Bone War had done more harm to paleontology, nearly a century after it had ended.

Others point out that it has shown paleontology as a science that learns from its mistakes and is honest and strong enough to make the necessary changes and go on.

In any case, it certainly shows that men of science can have their own issues.  Aside from the rivalry between Cope and Marsh, it shows how we are slaves to our times.  Marsh could not see that his fossil’s head was smaller and more delicate than the burly version he envisioned, largely because his society said it was supposed to be that way.

It also demonstrates the nineteenth century European fascination with naming and categorizing things, often to the exclusion of anything else, especially if that something else disagreed with the way they thought things should be.

Alas, we have our own prejudices.  Will we be able to stand the scrutiny of our successors a hundred years from now?  Only time will tell, but in any event, Brontosaurus was the dinosaur that never was, except in our own imaginations.

New Late Cretaceous Hadrosaur Found in New Mexico

1 06 2010
A reconstruction of Jeyawati rugoculus

A reconstruction of Jeyawati rugoculus a basal Hadrosaur that lived 80 to 65 million years ago (Image Credit: Lukas Panzarin)

A team of scientists have identified bones unearthed in 1996, as a new species of Hadrosaur that lived between 80 and 65 million years ago.  Publishing their findings in the May edition of the Journal of Vertebrate Paleontology, they have named their find Jeyawati rugoculus.  The name derives from two Zuni Indian words that mean grinding-mouth wrinkle-eye.

According to the researchers, J. rugoculus appears to be basal to the line of hadrosaurs.  Scientists believe that the animal walked mostly on all four legs, but that it could rear up on two legs when the need arose.

The bones are now located at the Arizona Museum of Natural History, where specimens of other dinosaurs uncovered in this region are also located.

Canadian Scientists Discover Yet Another New Horned Dinosaur

31 05 2010

It seems like there have been a lot of new horned dinosaurs discovered lately.  I’ve reported on several (see here and here).  Today comes a report, from Canada.com, of yet another new horned dinosaur.  Known as Medusaceratops lokii, it lived during the Cretaceous period, approximately 80 million years ago, along the eastern shores of Laramidia (the western part of North America), near what is today the Alberta-Montana border.

The discovery was made by two Canadian scientists, Anthony Russell (a biologist for the University of Calgary), and Michael Ryan (an adjunct professor at Carleton University, as well as the head of vertebrate paleontology at the Cleveland Museum of Natural History).  The new dinosaur is scheduled to be described in the book New Perspectives on Horned Dinosaurs:  The Royal Tyrrell Museum Ceratopsian Symposium, edited by Michael J. Ryan, Brenda J. Chinnery-Allgeier, and David A. Eberth.  The book is being published by Indiana University Press, and is scheduled for release on June 17, 2010.

The new dinosaur was named for the Medusa of Greek myth, because of the snake-like horns that protrude from its massive bone crest.  It’s species name comes from Loki, the Norse god of mischief, because it was such a tricky dinosaur to identify.  According to Ryan, speaking in the Canada.com interview, it required years of study to finally identify the remains as that of a new species.  This was, in part, because the remains were part of a bone bed, a collection of disarticulated bones grouped together by the force of water or other natural activities.

 According to Ryan, his team at first thought they had found an Albertaceratops, a very similar and closely related genus of ceratopsian.  It did not help, according to Ryan, that he had earlier found one nearby.

Due to copyright concerns, I have not included an image of Medusaceratops lokii.  To see one, follow the link to the Canada.com article.

First Horned Dinosaur from Mexico Discovered

28 05 2010
Photo Credit: Lukas Panzarin for the Utah Museum of Natural History

artist's rendering of the Mexican horned dinosaur Coahuilaceratops (Photo Credit: Lukas Panzarin for the Utah Museum of Natural History)

A team of scientists from the United States, Mexico, and Canada has discovered a new species of horned dinosaur in the Mexican state of Coahuila.  Named Coahuilaceratops magnacuerna, it weighed between four and five tons and is estimated to have had the longest horns of any ceratopsid dinosaur.

The new species lived approximately 72 million years ago.  At the time, the area had been a humid estuary, with lush vegetation, where salt water from the ocean mixed with fresh water from rivers.  It was part of Laramidia (the western part of North America), which formed a thin strip of land (200 to 300 miles wide) that stretched from Alaska to south of Mexico.

The specimens were excavated from the Cerro del Pueblo Formation (Campanian), the basal formation of the Difunta Group in the Parras Basin.  They are housed permanently in the collections of the Museum of the Desert in Saltillo, Mexico. Casts of the fossils are reposited in the collections of the Utah Museum of Natural History in Salt Lake City.

According to the University of Utah, whose scientists led the team, the find represents the first horned dinosaur from Mexico to be named and described the scientific literature.  It also represents the southernmost known occurrence of a ceratopopsid in North America.

The new species is scheduled to be announced officially in the book New Perspectives on Horned Dinosaurs, to be released next week by Indiana University Press.

To read the press release announcing the discovery, please follow this link:

Late-Cretaceous-North-America (Ron Blakey, NAU Geology, http://jan.ucc.nau.edu/~rcb7/)

A reconstruction of how North America looked in the Late Cretaceous period. Larmidia is the long strip of land along the left side of the image. Image credit: Ron Blakey, NAU Geology, http://jan.ucc.nau.edu/~rcb7/

Everythng Dinosaur Cites Hungarian Discovery as Evidence of European Ceratopsians

27 05 2010

The Blog Everything Dinosaur has a very interesting post that cites evidence from Hungary of a European horned dinosaur, named Ajkaceratops kozmai.

It also gives a brief discussion of the origin and spread of the horned dinosaur family.  It’s well worth reading.

The post can be viewed at the following link:

New Genus and Species of Pterosaur Discovered in Morocco

27 05 2010

An international team of paleontologists has discovered a new genus and species of pterosaur in the Kem Kem formation of southeastern Morocco.  Published May 26, in the online journal Public Library of Science One (PLoS One), it is named Alanqa saharica, and according to the authors is “the first clear evidence for the presence of azhdarchids in Gondwana at the start of the Late Cretaceous.”

The remains discovered at the site, along with other specimens now ascribed to the new species, represent animals with wingspans of approximately three to four meters.  However, a vertebra discovered that probably belongs to the same species indicates that a wingspan of six meters was possible.

The discovery adds to our knowledge of pterosaurs from Africa, which has been severely limited until recently, and even now is represented only by a number of fragmentary specimens.

The article can be read in its entirety at the following link: